se cambia Mónica Clapp de semiplenarista a plenarista
This commit is contained in:
parent
21a1d4aa26
commit
0c288ce328
@ -7,6 +7,12 @@
|
|||||||
"pdf":"",
|
"pdf":"",
|
||||||
"speaker":{"nombre":"Jairo Bochi","afiliacion":"Universidad Católica de Chile","web":"http://www.mat.uc.cl/~jairo.bochi/"}
|
"speaker":{"nombre":"Jairo Bochi","afiliacion":"Universidad Católica de Chile","web":"http://www.mat.uc.cl/~jairo.bochi/"}
|
||||||
},
|
},
|
||||||
|
{ "titulo":"",
|
||||||
|
"abstract":"",
|
||||||
|
"pdf":"",
|
||||||
|
"speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"}
|
||||||
|
},
|
||||||
|
|
||||||
{ "titulo":"",
|
{ "titulo":"",
|
||||||
"abstract":"",
|
"abstract":"",
|
||||||
"pdf":"",
|
"pdf":"",
|
||||||
@ -57,11 +63,6 @@
|
|||||||
"pdf":"",
|
"pdf":"",
|
||||||
"speaker":{"nombre":"Helena Nussensveig","afiliacion":"Universidad Federal de Rio de Janeiro","web":"http://www.im.ufrj.br/hlopes/"}
|
"speaker":{"nombre":"Helena Nussensveig","afiliacion":"Universidad Federal de Rio de Janeiro","web":"http://www.im.ufrj.br/hlopes/"}
|
||||||
},
|
},
|
||||||
{ "titulo":"",
|
|
||||||
"abstract":"",
|
|
||||||
"pdf":"",
|
|
||||||
"speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"}
|
|
||||||
},
|
|
||||||
{ "titulo":"Breathers solutions and the generalized Korteweg-de Vries equation",
|
{ "titulo":"Breathers solutions and the generalized Korteweg-de Vries equation",
|
||||||
"abstract":"This talk is centered in the generalized Korteweg-de Vries (KdV) equation (1) \\(∂_tu + ∂_x^3u + ∂_xf(u)=0, x, t ∈ R\\). The case \\(f(u) = u^2\\) corresponds to the famous KdV eq., and \\(f(u) = u^3\\) to the modified KdV eq. We shall review some results concerning the initial value problem associated to the equation (1). These include local and global well-posedness, existence and stability of traveling waves, and the existence and non-existence of “breathers” solutions. The aim is to understand how the non-linearity \\(f(u)\\) induces these results.",
|
"abstract":"This talk is centered in the generalized Korteweg-de Vries (KdV) equation (1) \\(∂_tu + ∂_x^3u + ∂_xf(u)=0, x, t ∈ R\\). The case \\(f(u) = u^2\\) corresponds to the famous KdV eq., and \\(f(u) = u^3\\) to the modified KdV eq. We shall review some results concerning the initial value problem associated to the equation (1). These include local and global well-posedness, existence and stability of traveling waves, and the existence and non-existence of “breathers” solutions. The aim is to understand how the non-linearity \\(f(u)\\) induces these results.",
|
||||||
"pdf":"",
|
"pdf":"",
|
||||||
|
Loading…
Reference in New Issue
Block a user