diff --git a/data/conferencias.json b/data/conferencias.json index a8d7474..ab31f72 100644 --- a/data/conferencias.json +++ b/data/conferencias.json @@ -7,6 +7,12 @@ "pdf":"", "speaker":{"nombre":"Jairo Bochi","afiliacion":"Universidad Católica de Chile","web":"http://www.mat.uc.cl/~jairo.bochi/"} }, + { "titulo":"", + "abstract":"", + "pdf":"", + "speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"} + }, + { "titulo":"", "abstract":"", "pdf":"", @@ -57,11 +63,6 @@ "pdf":"", "speaker":{"nombre":"Helena Nussensveig","afiliacion":"Universidad Federal de Rio de Janeiro","web":"http://www.im.ufrj.br/hlopes/"} }, - { "titulo":"", - "abstract":"", - "pdf":"", - "speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"} - }, { "titulo":"Breathers solutions and the generalized Korteweg-de Vries equation", "abstract":"This talk is centered in the generalized Korteweg-de Vries (KdV) equation (1) \\(∂_tu + ∂_x^3u + ∂_xf(u)=0, x, t ∈ R\\). The case \\(f(u) = u^2\\) corresponds to the famous KdV eq., and \\(f(u) = u^3\\) to the modified KdV eq. We shall review some results concerning the initial value problem associated to the equation (1). These include local and global well-posedness, existence and stability of traveling waves, and the existence and non-existence of “breathers” solutions. The aim is to understand how the non-linearity \\(f(u)\\) induces these results.", "pdf":"",