From 0c288ce328d096b43e5ba769b4ee1dac2f8fd076 Mon Sep 17 00:00:00 2001
From: diego <diego@cmat.edu.uy>
Date: Wed, 29 Jan 2020 22:48:55 -0300
Subject: [PATCH] =?UTF-8?q?se=20cambia=20M=C3=B3nica=20Clapp=20de=20semipl?=
 =?UTF-8?q?enarista=20a=20plenarista?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

---
 data/conferencias.json | 11 ++++++-----
 1 file changed, 6 insertions(+), 5 deletions(-)

diff --git a/data/conferencias.json b/data/conferencias.json
index a8d7474..ab31f72 100644
--- a/data/conferencias.json
+++ b/data/conferencias.json
@@ -7,6 +7,12 @@
                 "pdf":"",
                 "speaker":{"nombre":"Jairo Bochi","afiliacion":"Universidad Católica de Chile","web":"http://www.mat.uc.cl/~jairo.bochi/"}
             },
+            {   "titulo":"",
+                "abstract":"",
+                "pdf":"",
+                "speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"}
+            },
+
             {   "titulo":"",
                 "abstract":"",
                 "pdf":"",
@@ -57,11 +63,6 @@
                 "pdf":"",
                 "speaker":{"nombre":"Helena Nussensveig","afiliacion":"Universidad Federal de Rio de Janeiro","web":"http://www.im.ufrj.br/hlopes/"}
             },
-            {   "titulo":"",
-                "abstract":"",
-                "pdf":"",
-                "speaker":{"nombre":"Mónica Clapp","afiliacion":"UNAM", "web":"https://www.matem.unam.mx/fsd/mclapp"}
-            },
             {   "titulo":"Breathers solutions and the generalized Korteweg-de Vries equation",
                 "abstract":"This talk is centered in the generalized Korteweg-de Vries (KdV) equation (1) \\(∂_tu + ∂_x^3u + ∂_xf(u)=0, x, t ∈ R\\). The case \\(f(u) = u^2\\) corresponds to the famous KdV eq., and \\(f(u) = u^3\\) to the modified KdV eq. We shall review some results concerning the initial value problem associated to the equation (1). These include local and global well-posedness, existence and stability of traveling waves, and the existence and non-existence of “breathers” solutions. The aim is to understand how the non-linearity \\(f(u)\\) induces these results.",
                 "pdf":"",