moddifica cartel de registro cerrado, se quita la noticia de inscripciones abiertas, cambios en sesion 24 cambia de dia Gardella por Ara

This commit is contained in:
Germán Correa 2021-09-09 11:16:10 -03:00
parent 4ad04b5b6d
commit da9a3e8ae9
3 changed files with 13 additions and 13 deletions

View File

@ -1,8 +1,8 @@
---
- titulo: Inscripciones:
- titulo: 'Inscripciones:'
descripcion: Ya están abiertas. Evento de participación gratuita y con inscripción obligatoria.
imagen: img/register-icon.jpg
activa: true
activa: false
link: '#aviso'
- titulo: Apoyo Económico para participar en el CLAM2020
descripcion: Llamado extraoridinario del Programa de Ayuda Económica orientado específicamente a apoyar a los participantes del CLAM2020

View File

@ -737,7 +737,7 @@
end: 2021-09-15T17:30
speaker: Santiago Simanca (the results of this talk were obtained during his stay at Courant Institute of Mathematical Sciences until 2020)
- sesion: Geometría, Mecánica, Control y sus interconexiones
zoom:
zoom: https://us02web.zoom.us/j/83633086019
organizadores:
- nombre: Viviana Alejandra Díaz
mail: viviana.diaz@uns.edu.ar
@ -865,7 +865,7 @@
end: 2021-09-13T17:30
speaker: Cintya Wink de Oliveira Benedito (Universidade Estadual Paulista, Brasil)
- sesion: Análisis no lineal en espacios de Banach
zoom:
zoom: https://us02web.zoom.us/j/81106679177
organizadores:
- nombre: Gerardo Botelho
mail: botelho@ufu.br
@ -1366,8 +1366,8 @@
- titulo: Leavitt path algebras and graph C*-algebras associated to separated graphs
abstract: |
<p>A separated graph is a pair \((E,C)\), where \(E\) is a directed graph, \(C=\bigsqcup _{v\in E^ 0} C_v\), and \(C_v\) is a partition of \(r^{-1}(v)\) (into pairwise disjoint nonempty subsets) for every vertex \(v\). In recent years, separated graphs have been used to provide combinatorial models of several structures, often related to dynamical systems. This can be understood as a generalization of the common use of usual directed graphs in symbolic dynamics. I will survey some of these developments, including the failure of Tarski's dichotomy in the setting of topological actions, the construction of a family of ample groupoids with prescribed type semigroup, and the modeling of actions on the Cantor set.</p>
start: 2021-09-16T15:00
end: 2021-09-16T15:45
start: 2021-09-17T15:00
end: 2021-09-17T15:45
speaker: Pere Ara (Universitat Autònoma de Barcelona, España)
- titulo: A non-commutative topological dimension
abstract: |
@ -1392,8 +1392,8 @@
<p>Let \(A\) and \(B\) be \(C^*\)-algebras, \(A\) separable and \(I\) an ideal in \(B\). We show that for any completely positive contractive linear map \(\psi\colon A\to B/I\) there is a continuous family \(\Theta_t\colon A\to B\), for \(t\in [1,\infty)\), of lifts of \(\psi\) that are asymptotically linear, asymptotically completely positive and asymptotically contractive. If \(A\) and \(B\) carry continuous actions of a second countable locally compact group \(G\) such that \(I\) is \(G\)-invariant and \(\psi\) is equivariant, then the family \(\Theta_t\) can be chosen to be asymptotically equivariant.</p>
<p>If a linear completely positive lift for \(\psi\) exists, then we can arrange that \(\Theta_t\) is linear and completely positive for all \(t\in [1,\infty)\); this yields an equivariant version of the Choi-Effros lifting theorem. In the equivariant setting, if \(A\), \(B\) and \(\psi\) are unital, the existence of asymptotically linear unital lifts are only guaranteed if \(G\) is amenable. This leads to a new characterization of amenability in terms of the existence of asymptotically equivariant unital sections for quotient maps.</p>
<p>This talk is based on joint work with Marzieh Forough and Klaus Thomsen.</p>
start: 2021-09-17T15:00
end: 2021-09-17T15:45
start: 2021-09-16T15:00
end: 2021-09-16T15:45
speaker: Eusebio Gardella (Universidad de Münster, Alemania)
- titulo: Continuous orbit equivalence and full groups of ultragraph C*-algebras
abstract: |
@ -1415,7 +1415,7 @@
end: 2021-09-17T17:30
speaker: Román Sasyk (Universidad de Buenos Aires, Argentina)
- sesion: Teoría de Números
zoom:
zoom: https://us02web.zoom.us/j/88466883296
organizadores:
- nombre: María de los Ángeles Chara
mail: charamaria@gmail.com

View File

@ -9,8 +9,8 @@
{% if closed %}
{% set disabled="disabled" %}
<div class="alert alert-danger">
<strong>Registration has been closed!</strong><br/>
For any further questions, please contact: <a class="alert-link" href="mailto:clam2021@fing.edu.uy">clam2021@fing.edu.uy</a>
<strong>Inscripciones cerradas!</strong><br/>
Por cualquier otra consulta dirijase: <a class="alert-link" href="mailto:clam2021@fing.edu.uy">clam2021@fing.edu.uy</a>
</div>
{% endif %}
<div class="row">
@ -25,10 +25,10 @@
<i class="glyphicon glyphicon-info-sign"></i> <strong>Inscripciones abiertas desde el domingo 20 de Junio al miércoles 8 de Septiembre. </strong><br />
</div>
<div class="alert alert-info">
<!-- <div class="alert alert-info">
<i class="glyphicon glyphicon-info-sign"></i> <strong>Al momento de la inscripción el participante deberá registrar el e-mail de su cuenta Zoom.</strong><br />
</div>
</div>-->
<hr class="separador"/>
</div>
</div>