diff --git a/data/noticias.yml b/data/noticias.yml index 3e616b0..4fa50a0 100644 --- a/data/noticias.yml +++ b/data/noticias.yml @@ -1,8 +1,8 @@ --- -- titulo: Inscripciones: +- titulo: 'Inscripciones:' descripcion: Ya están abiertas. Evento de participación gratuita y con inscripción obligatoria. imagen: img/register-icon.jpg - activa: true + activa: false link: '#aviso' - titulo: Apoyo Económico para participar en el CLAM2020 descripcion: Llamado extraoridinario del Programa de Ayuda Económica orientado específicamente a apoyar a los participantes del CLAM2020 diff --git a/data/sesiones.yml b/data/sesiones.yml index b678687..fcdcf57 100644 --- a/data/sesiones.yml +++ b/data/sesiones.yml @@ -737,7 +737,7 @@ end: 2021-09-15T17:30 speaker: Santiago Simanca (the results of this talk were obtained during his stay at Courant Institute of Mathematical Sciences until 2020) - sesion: Geometría, Mecánica, Control y sus interconexiones - zoom: + zoom: https://us02web.zoom.us/j/83633086019 organizadores: - nombre: Viviana Alejandra Díaz mail: viviana.diaz@uns.edu.ar @@ -865,7 +865,7 @@ end: 2021-09-13T17:30 speaker: Cintya Wink de Oliveira Benedito (Universidade Estadual Paulista, Brasil) - sesion: Análisis no lineal en espacios de Banach - zoom: + zoom: https://us02web.zoom.us/j/81106679177 organizadores: - nombre: Gerardo Botelho mail: botelho@ufu.br @@ -1366,8 +1366,8 @@ - titulo: Leavitt path algebras and graph C*-algebras associated to separated graphs abstract: |
A separated graph is a pair \((E,C)\), where \(E\) is a directed graph, \(C=\bigsqcup _{v\in E^ 0} C_v\), and \(C_v\) is a partition of \(r^{-1}(v)\) (into pairwise disjoint nonempty subsets) for every vertex \(v\). In recent years, separated graphs have been used to provide combinatorial models of several structures, often related to dynamical systems. This can be understood as a generalization of the common use of usual directed graphs in symbolic dynamics. I will survey some of these developments, including the failure of Tarski's dichotomy in the setting of topological actions, the construction of a family of ample groupoids with prescribed type semigroup, and the modeling of actions on the Cantor set.
- start: 2021-09-16T15:00 - end: 2021-09-16T15:45 + start: 2021-09-17T15:00 + end: 2021-09-17T15:45 speaker: Pere Ara (Universitat Autònoma de Barcelona, España) - titulo: A non-commutative topological dimension abstract: | @@ -1392,8 +1392,8 @@Let \(A\) and \(B\) be \(C^*\)-algebras, \(A\) separable and \(I\) an ideal in \(B\). We show that for any completely positive contractive linear map \(\psi\colon A\to B/I\) there is a continuous family \(\Theta_t\colon A\to B\), for \(t\in [1,\infty)\), of lifts of \(\psi\) that are asymptotically linear, asymptotically completely positive and asymptotically contractive. If \(A\) and \(B\) carry continuous actions of a second countable locally compact group \(G\) such that \(I\) is \(G\)-invariant and \(\psi\) is equivariant, then the family \(\Theta_t\) can be chosen to be asymptotically equivariant.
If a linear completely positive lift for \(\psi\) exists, then we can arrange that \(\Theta_t\) is linear and completely positive for all \(t\in [1,\infty)\); this yields an equivariant version of the Choi-Effros lifting theorem. In the equivariant setting, if \(A\), \(B\) and \(\psi\) are unital, the existence of asymptotically linear unital lifts are only guaranteed if \(G\) is amenable. This leads to a new characterization of amenability in terms of the existence of asymptotically equivariant unital sections for quotient maps.
This talk is based on joint work with Marzieh Forough and Klaus Thomsen.
- start: 2021-09-17T15:00 - end: 2021-09-17T15:45 + start: 2021-09-16T15:00 + end: 2021-09-16T15:45 speaker: Eusebio Gardella (Universidad de Münster, Alemania) - titulo: Continuous orbit equivalence and full groups of ultragraph C*-algebras abstract: | @@ -1415,7 +1415,7 @@ end: 2021-09-17T17:30 speaker: Román Sasyk (Universidad de Buenos Aires, Argentina) - sesion: Teoría de Números - zoom: + zoom: https://us02web.zoom.us/j/88466883296 organizadores: - nombre: María de los Ángeles Chara mail: charamaria@gmail.com diff --git a/templates/registration.html b/templates/registration.html index b891a8a..436c785 100644 --- a/templates/registration.html +++ b/templates/registration.html @@ -9,8 +9,8 @@ {% if closed %} {% set disabled="disabled" %}