se modifican conferencias y sesiones
This commit is contained in:
parent
30aa37e7be
commit
8142d51b39
@ -81,25 +81,27 @@
|
|||||||
nombre: Mauricio Velasco
|
nombre: Mauricio Velasco
|
||||||
afiliacion: Universidad de los Andes
|
afiliacion: Universidad de los Andes
|
||||||
web: http://wwwprof.uniandes.edu.co/~mvelasco/Velasco.html
|
web: http://wwwprof.uniandes.edu.co/~mvelasco/Velasco.html
|
||||||
- titulo: TBC
|
- titulo: Pointed Hopf algebras over nilpotent groups
|
||||||
abstract: ''
|
abstract: I will report on the ongoing project of classifying pointed Hopf algebras with finite Gelfand-Kirillov dimension.
|
||||||
pdf: ''
|
pdf: ''
|
||||||
speaker:
|
speaker:
|
||||||
nombre: Nicolás Andruskiewitsch
|
nombre: Nicolás Andruskiewitsch
|
||||||
afiliacion: Universidad Nacional de Córdoba
|
afiliacion: Universidad Nacional de Córdoba
|
||||||
web: https://www.famaf.unc.edu.ar/~andrus/
|
web: https://www.famaf.unc.edu.ar/~andrus/
|
||||||
- titulo: TBC
|
- titulo: Optimal adjustment sets in non-parametric causal graphical models
|
||||||
abstract: ''
|
abstract: Causal graphical models are statistical models represented by a directed acyclic graph in which each vertex stands for a random variable and a structural equation that generates it which is a function of its parents in the graph and an independent error.
|
||||||
|
I will start with a brief introduction of causal graphical models and of their use in the determination of identifiability and optimal estimation of the so-called average treatment effect (ATE) of static and personalized treatments in the presence of confounding variables.
|
||||||
|
I will then consider the problem of determining the best set of potential confounding variables at the stage of the design of a planned observational study aimed at assessing the population average causal effect of a point exposure personalized, i.e. dynamic, or static treatment. Given a tentative non-parametric graphical causal model, possibly including unobservable variables, the goal is to select the "best" set of observable covariates in the sense that it suffices to control for confounding under the model and it yields a non-parametric estimator of ATE with smallest variance. For studies without unobservables aimed at assessing the effect of a static point exposure we show that graphical rules recently derived for identifying optimal covariate adjustment sets in linear causal graphical models and treatment effects estimated via ordinary least squares also apply in the non-parametric setting. We further extend these results to personalized treatments. Moreover, we show that, in graphs with unobservable variables, but with at least one adjustment set fully observable, there exist adjustment sets that are optimal minimal (minimum), yielding non-parametric estimators with the smallest variance among those that control for observable adjustment sets that are minimal (of minimum cardinality). In addition, although a globally optimal adjustment set among observable adjustment sets does not always exist, we provide a sufficient condition for its existence. We provide polynomial time algorithms to compute the observable globally optimal (when it exists), optimal minimal, and optimal minimum adjustment sets. This is joint work with Ezequiel Smucler and Facundo Sapienza.
|
||||||
pdf: ''
|
pdf: ''
|
||||||
speaker:
|
speaker:
|
||||||
nombre: Andrea Rotnizky
|
nombre: Andrea Rotnizky
|
||||||
afiliacion: School of Public Health Harvard T.H. CHAN
|
afiliacion: Universidad di Tella, Buenos Aires
|
||||||
web: https://www.hsph.harvard.edu/andrea-rotnitzky/
|
web: https://www.hsph.harvard.edu/andrea-rotnitzky/
|
||||||
- titulo: TBA
|
- titulo: Inviscid dissipation and turbulence
|
||||||
abstract: ''
|
abstract: ''
|
||||||
pdf: ''
|
pdf: ''
|
||||||
speaker:
|
speaker:
|
||||||
nombre: Helena Nussensveig
|
nombre: Helena Nussenszveig Lopes
|
||||||
afiliacion: Universidad Federal de Rio de Janeiro
|
afiliacion: Universidad Federal de Rio de Janeiro
|
||||||
web: http://www.im.ufrj.br/hlopes/
|
web: http://www.im.ufrj.br/hlopes/
|
||||||
- titulo: Unique Continuation for some Nonlinear Dispersive Models
|
- titulo: Unique Continuation for some Nonlinear Dispersive Models
|
||||||
|
@ -177,12 +177,6 @@
|
|||||||
mail: pamster@dm.uba.ar
|
mail: pamster@dm.uba.ar
|
||||||
- nombre: Gonzalo Robledo
|
- nombre: Gonzalo Robledo
|
||||||
mail: grobledo@uchile.cl
|
mail: grobledo@uchile.cl
|
||||||
- titulo: Educación matemática
|
|
||||||
organizadores:
|
|
||||||
- nombre: Elizabeth Montoya Delgadillo
|
|
||||||
mail: elizabeth.montoya@pucv.cl
|
|
||||||
- nombre: Miguel Ribeiro
|
|
||||||
mail: cmribas78@gmail.com
|
|
||||||
- titulo: Problemas Variacionales y Ecuaciones Diferenciales Parciales
|
- titulo: Problemas Variacionales y Ecuaciones Diferenciales Parciales
|
||||||
organizadores:
|
organizadores:
|
||||||
- nombre: Judith Campos Cordero
|
- nombre: Judith Campos Cordero
|
||||||
@ -213,7 +207,7 @@
|
|||||||
mail: gregorio.malajovich@gmail.com
|
mail: gregorio.malajovich@gmail.com
|
||||||
- nombre: Diego Armentano
|
- nombre: Diego Armentano
|
||||||
mail: diego@cmat.edu.uy
|
mail: diego@cmat.edu.uy
|
||||||
- titulo: Análisis Wavelete y aplicaciones
|
- titulo: Análisis wavelets y aplicaciones
|
||||||
organizadores:
|
organizadores:
|
||||||
- nombre: Victoria Vampa
|
- nombre: Victoria Vampa
|
||||||
mail: victoriavampa@gmail.com
|
mail: victoriavampa@gmail.com
|
||||||
@ -232,9 +226,7 @@
|
|||||||
- nombre: Noé Bárcenas
|
- nombre: Noé Bárcenas
|
||||||
mail: barcenas@matmor.unam.mx
|
mail: barcenas@matmor.unam.mx
|
||||||
- nombre: Eugenia Ellis
|
- nombre: Eugenia Ellis
|
||||||
mail: eellis@fing.edu.uy
|
mail: eellis@fing.edu.uy
|
||||||
- nombre: Emanuel Rodríguez Cirone
|
|
||||||
mail: ercirone@dm.uba.ar
|
|
||||||
- titulo: Stochastic analysis and stochastic processes
|
- titulo: Stochastic analysis and stochastic processes
|
||||||
organizadores:
|
organizadores:
|
||||||
- nombre: Paavo Salminen
|
- nombre: Paavo Salminen
|
||||||
|
Loading…
Reference in New Issue
Block a user