ajustes en cambio de timezone en calendario, agrega charlas de premiados algunas, moidifica sesion 34 horario ismael gutierrez

This commit is contained in:
Germán Correa 2021-09-02 16:24:05 -03:00
parent 7e617171f3
commit 48306a95d8
3 changed files with 62 additions and 19 deletions

View File

@ -188,8 +188,9 @@
web: https://math.uchicago.edu/~shurtados/
start: 2021-09-14T13:00-0300
end: 2021-09-14T14:00-0300
- titulo: TBA
abstract: ''
- titulo: 'Twisted honeycombs revisited: chirality in polytope-like structures'
abstract: |
In the 70´s Coxeter considered the 4-dimensional regular polytopes and used the so-called Petrie Polygons to obtain quotients of the polytopes that, while having all possible rotational symmetry, lack reflectional symmetry. He called these objects Twisted Honeycombs. Nowadays, objects with such symmetry properties are often called chiral. In this mini-course I will review Coxeter´s twisted honeycombs and explore a natural way to extend Coxeter´s work to polytope-like structures, in particular, we shall see some properties of so-called chiral skeletal polyhedra as well as of chiral abstract polytopes.
pdf: ''
speaker:
nombre: Isabel Hubard
@ -219,35 +220,37 @@
end: 2021-09-17T14:00-0300
- categoria: Premiados
charlas:
- titulo: Charla Premiado 1
abstract: TBA
- titulo: Dynamical indecomposability and topology.
abstract: |
The problem of determining dynamical properties from static information will be discussed. The setting of partially hyperbolic dynamics enjoys several such results in the conservative setting, but I would like to discuss a non-conservative instance.
speaker:
nombre: TBA
afiliacion:
nombre: Rafael Potrie
afiliacion: UDELAR, Montevideo, Uruguay
web:
start: 2021-09-13T14:00-0300
end: 2021-09-13T15:00-0300
- titulo: Charla Premiado 2
abstract: TBA
- titulo: Pointed Hopf algebras with finite growth
abstract: |
I will report some recent advances on the classification of pointed Hopf algebras with abelian coradical and finite Gelfand-Kirillov dimension, with special emphasis on the presentation of new examples of Nichols algebras over abelian groups with finite growth. I will also discuss some open questions that would allow us to address the final answer to this problem.
speaker:
nombre: TBA
afiliacion:
nombre: Iván Angiono
afiliacion: CIEM-FAMAF, Córdoba, Argentina
web:
start: 2021-09-14T14:00-0300
end: 2021-09-14T15:00-0300
- titulo: Charla Premiado 3
abstract: TBA
speaker:
nombre: TBA
afiliacion:
nombre: Luna Lomonaco
afiliacion: IMPA, Río de Janeiro, Brasil
web:
start: 2021-09-15T14:00-0300
end: 2021-09-15T15:00-0300
- titulo: Charla Premiado 4
abstract: TBA
speaker:
nombre: TBA
afiliacion:
nombre: Luis Núñez Betancourt
afiliacion: CIMAT, Guanajuato, México
web:
start: 2021-09-16T14:00-0300
end: 2021-09-16T15:00-0300

View File

@ -838,8 +838,8 @@
$$l_{1}\Big(\prod_{i=1}^n g_i^{\epsilon_i}, \prod_{i=1}^n g_i^{\delta_i}\Big) = \sum_{i=1}^n |\epsilon_i-\delta_i|.$$
A <em>grid code</em> \(\codeC\) is a subset of \(G\), if \(\codeC\) is subgroup of \(G\), then it is said that \(\codeC\) is a \texttt{group code}. The elements of \(\codeC\) are called \texttt{codewords}. The \texttt{minimum distance} \(d\) of a code \(\codeC\) is defined as usually, that is, as the smallest distance between any two different elements of \(\codeC\). Let \(\codeC\) be a code of \(G\) with minimum distance \(d\). Then we say that \(\codeC\) is a \((n,|\codeC|,d)\)-code over \(G\) and \((n,|\codeC|,d)\) are its parameters.
In this talk, we consider such codes, and we prove some classical results on block codes, like Singleton Bound and others.
start: 2021-09-13T17:30
end: 2021-09-13T18:15
start: 2021-09-14T17:30
end: 2021-09-14T18:15
speaker: Ismael Gutiérrez (Universidad del Norte, Colombia)
- titulo: Direct sum of Barnes-Wall lattices via totally real number fields
abstract: |

View File

@ -109,9 +109,7 @@ document.addEventListener("DOMContentLoaded", function () {
nowIndicator: true,
now: "2021-09-12",
slotMinTime: "11:00:00",
slotMaxTime: "21:00:00",
//slotMinTime:"11:00:00",
//slotMaxTime:"21:00:00",
slotMaxTime: "21:00:00",
slotDuration: "00:15",
allDaySlot: false,
slotLabelFormat: {
@ -141,7 +139,49 @@ document.addEventListener("DOMContentLoaded", function () {
},
});
calendar.render();
console.log(calendar)
timeZoneSelectorEl.addEventListener("change", function () {
console.log(calendar.getOption('slotMinTime'))
calendar.setOption("timeZone", this.value);
switch (this.value) {
case "America/Montevideo":
calendar.setOption("slotMinTime", "11:00:00");
calendar.setOption("slotMaxTime", "21:00:00");
calendar.setOption("initialDate", "2021-09-13");
calendar.setOption("validRange", {
start: "2021-09-13",
end: "2021-09-18",
});
break;
case "UTC":
calendar.setOption("slotMinTime", "14:00:00");
calendar.setOption("slotMaxTime", "23:59:00");
calendar.setOption("initialDate", "2021-09-13");
calendar.setOption("validRange", {
start: "2021-09-13",
end: "2021-09-18",
});
break;
default:
let initial = moment("2021-09-13T14:00Z");
let final = moment("2021-09-17T23:30Z");
let offset = initial.utcOffset();
calendar.setOption("slotMinTime", initial.format("H:mm"));
if(offset>0){
calendar.setOption("slotMaxTime", {days:1,hours:offset/60});
}
//let currentOffset = moment().utcOffset();
//initial.add(currentOffset, "minutes");
//calendar.setOption('slotMinTime', initial.utc().format('H:mm'))
//calendar.setOption("slotMaxTime", {days:1,hours:currentOffset/60});
else{
calendar.setOption("slotMaxTime",final.format("H:mm"));
}
calendar.setOption("initialDate",initial.format("Y-MM-DD"));
calendar.setOption("validRange", {
start: initial.format("Y-MM-DD"),
end:final.add(1,'d').format("Y-MM-DD")
});
}
});
});