Se presenta un enfoque simplificado del problema de obtener la mecánica clásica a partir de una ecuación de difusión. Al final presentaremos una lista de ejemplos que incluye: el comportamiento de una partícula en un campo electromagnético y también una aproximación informal al comportamiento de la solución de la ecuación de onda, en el límite de altas frecuencias.
De manera informal, estudiar geometría en un conjunto X significa fijar un grupo G de biyecciones e investigar qué propiedades permanecen invariantes bajo la acción de elementos de G. Si X admite estructura adicional (espacio topológico, variedad diferenciable, variedad algebraica, etc), se puede elegir G=G_X como siendo constituido por los isomorfismos en relación a dicha estructura (resp. homeomorfismos, difeomorfismos, automorfismos, etc). Si X es una variedad algebraica, en la topología subyacente de X todo abierto no vacío es esencialmente denso, por lo tanto dos automorfismos que coincidan en un abierto son iguales, i.e., la estructura geométrica de X es muy rígida. Por lo tanto, si se quieren entender propiedades de X que sean de naturaleza local (y entonces globales salvo en un conjunto "pequeño") en natural permitir que G_X contenga aplicaciones del tipo Φ:U V, con Φ isomorfismo y U, V dos abiertos densos de X; en términos algebraicos, y expresándose de modo impreciso, eso corresponde a estudiar propiedades de un dominio de integridad que sólo dependen de su cuerpo de fracciones. En este caso estamos estudiando la llamada Geometría Birracional de X.
En esta charla, en la cual no pretendemos entrar en tecnicismos y en general argumentaremos utilizando conceptos básicos de álgebra y geometría, y apelando a la intuición, comenzaremos dando nociones generales sobre Geometría Birracional y una muy somera descripción del problema de clasificación de los pares (X,G_X), objeto de intensa investigaci\'on actualmente. Luego nos concentraremos en el caso en que X es una variedad lineal, que como veremos, su simplicidad contrasta con el hecho de que su geometría birracional (i.e. G_X) sea la más complicada, y casi completamente desconocida si X tiene dimensión mayor que dos. También veremos aplicaciones al estudio de foliaciones holomorfas y derivaciones en anillos de polinomios.