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1. Kasparov’s KK-theory

Kasparov’s KK-theory is the major tool in noncommutative topology , [10]. The
KK-theory of separable C∗-algebras is a common generalization both of topological
K-homology and tolopological K-theory as an additive bivariant functor Let A and
B separable C∗-algebras then a group KK(A,B) is defined such that

KK∗(C, B) ' Ktop
∗ (B) KK∗(A,C) ' K∗hom(A).

An important property of KK-theory is the so-called Kasparov product ,

KK(A,B)×KK(B,C)→ KK(A,C)

which is bilinear with respect to the additive group structures. The Kasparov
groups KK(A,B) for A,B ∈ C∗-Alg form a morphisms sets A → B of a category
KK. The composition in KK is given by the Kasparov product and the category
KK admits a triangulated category structure.

There is a canonical functor k : C∗-Alg → KK that acts identically on ob-
jects and every *-homomorphism f : A → B is represented by an element [f ] ∈
KK(A,B). The functor k : C∗-Alg→ KK

• ... is homotopy invariant: f0 ∼ f1 implies k(f0) = k(f1).
• ... is C∗-stable: any corner embedding A → A ⊗ K(`2N) induces an iso-

morphism k(A) = k(A⊗K(`2N)).

• ... is split-exact: for every split-extension I
f−→ A

g−→ A/I (i.e. there exists

a *-homomorpfhism s : A/I → A such that g ◦ s = id) then k(I)
k(f)−−−→

k(A)
k(g)−−−→ k(A/I) is part of a distinguished triangle.

The functor k : C∗-Alg→ KK is the universal homotopy invariant, C∗-stable and
split exact functor. Main authors who worked in the previous results: J. Cuntz, N.
Higson, G. Kasparov, R. Meyer.

2. Algebraic kk-theory

Algebraic kk-theory was introduced by G. Cortiñas and A. Thom in order to
show how methods from K-theory of operator algebras can be applied in completely
algebraic setting. Let ` a commutative ring with unit and Alg the category of `-
algebras (with or without unit).
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Kasparov’s KK-theory ↔ Algebraic kk-theory

[10] [2]
bivariant K-theory on C∗-Alg bivariant K-theory on Alg

k : C∗-Alg→ KK j : Alg→ KK

k is stable w.r.t. compact operators j is stable w.r.t. matrices

A 'KK A⊗K(`2(N)) A 'KK M∞(A) =
⋃
n∈N

Mn(A)

k is continuous homotopy invariant j is polynomial homotopy invariant
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B 'KK C([0, 1], B) B 'KK B[t]
k is split exact j is excisive

k is universal for these properties j is universal for these properties

KK∗(C, A) ' Ktop
∗ (A) kk∗(`, A) ' KH∗(A)

KH is Weibel’s homotopy K-theory defined in [19].

Theorem 2.1. [2] The functor j : Alg → KK is an excisive, homotopy invariant,
and M∞-stable functor and it is the universal functor for these properties.

Let X be a infinity set. Consider

MX := {a : X × X → ` : sopp(a) <∞}.
Let A be an algebra, then MXA := MX ⊗` A.
Theorem 2.2. [13] The functor j : Alg→ RX is an excisive, homotopy invariant,
and MX -stable functor and it is the universal functor for these properties.

If X = N both theorems are the same.

3. Equivariant algebraic kk-theory

We introduce in [5] an algebraic bivariant K-theory for the category of G-algebras
where G is a group.

Equivariant Kasparov’s KK-theory ↔ Equivariant algebraic kk-theory

[10] [5]
bivariant K-theory on G-C∗-Alg bivariant K-theory on G-Alg

k : G-C∗-Alg→ KKG j : G-Alg→ KKG

k is stable w.r.t. compact operators j is G-stable

A 'KKG A⊗K(`2(G× N)) A 'KKG M∞MG(A)
k is continuous homotopy invariant j is polynomial homotopy invariant

B 'KKG C([0, 1], B) B 'KKG B[t]
k is split exact j is excisive

k is universal for these properties j is universal for these properties

G compact G finite and 1
|G| ∈ `

KKG
∗ (C, A) ' Ktop

∗ (AoG) kkG∗ (`, A) ' KH∗(AoG)



EQUIVARIANT ALGEBRAIC KK-THEORY 3

Let A be a G-algebra and

MG := {a : G×G→ ` : sopp(a) <∞}.
Consider in MG ⊗A the following action of G

g · (es,t ⊗ a) = egs,gt ⊗ g · a
A G-stable functor identifies any G-algebra A with MG ⊗A.

Theorem 3.1 ([5]). The functor j : G-Alg → KKG is an excisive, homotopy
invariant, and G-stable functor and it is the universal functor for these properties.

3.1. Green-Julg Theorem. The functors

G-Alg
o

,,
Alg

τ
ll

AoG = A⊗ `G (an g)(bn h) = a[g · b] n gh

can be extended to

G-Alg

jG

��

o
,,
Alg

τ
ll

j

��

not adjoint functorsoo

KKG
o

++
KK

τ

ll adjoint functors if G is finite and 1
|G| ∈ `oo

Theorem 3.2. [5] Let G be a finite group of n elements such that 1
n ∈ `. Let A be

a G-algebra and B an algebra. There is an isomorphism

ψGJ : kkG(Bτ , A)→ kk(B,AoG)

Corollary 3.3. [5] Let G be a finite group of n elementrs such that 1
n ∈ `. Then

kkG(`, A) ' KH(AoG) kkG(`, `) ' KH(`G)

3.2. Adjointness between IndGH and ResHG . Let H be a subgroup of G and A
an H-algebra. Define

• A(G) = {α : G→ A : α is a function with finite support}
• IndGH(A) = {α ∈ A(G) : α(s) = h · α(sh) ∀h ∈ H, s ∈ G}
• (g · α)(s) = α(g−1s)

The functors

G-Alg

ResHG ,,
H-Alg

IndGH

ll IndGH is NOT left adjoint to ResHGoo

can be extended to

KKG
ResHG ,,

KKH

IndGH

kk IndGH is a left adjoint to ResHGoo

Theorem 3.4. [5] Let G be a group, H a subgroup of G, B an H-algebra and A a
G-algebra. Then there is an isomorphism

ψIR : kkG(IndGH(B), A)→ kkH(B,ResHG (A))
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Corollary 3.5. • kkG(`(G/H), A) ' kkH(`,ResHG (A)).
• If H is finite then kkG(`(G/H), A) ' KH(AoH).
• kkG(`(G), A) ' KH(A).

3.3. Baaj-Skandalis duality. A G-graduation on an algebra A is a decomposition
on submodules

A =
⊕
s∈G

As AsAt ⊆ Ast ∀s, t ∈ G

The functors

G-Alg
o

--
Ggr-Alg

ô
ll

can be extended to

G-Alg

jG

��

o
--
Ggr-Alg

ô
ll

ĵG

��

not an equivalenceoo

KKG
o

,,
K̂K

G

ô

ll an equivalenceoo

4. Algebraic quantum kk-theory

4.1. Van Daele’s algebraic quantum groups. Let ` = C and (G,∆, ϕ) an al-
gebraic quantum group. That means, (G,∆) is a multiplier Hopf algebra:

• G associative algebra over C with non-degenerate product

• M(G) multiplier algebra of G: (ρ1, ρ2) ∈M(G) if
– ρi : G → G is a linear map (i = 1, 2)
– ρ1(hk) = ρ1(h)k ρ2(hk) = hρ2(k) ρ2(h)k = hρ1(k) ∀h, k ∈ G
– (ρ1, ρ2)(ρ̃1, ρ̃2) = (ρ1ρ̃1, ρ̃2ρ2)

• An homomorphism ∆ : G →M(G ⊗ G) is a comultiplication if
– ∆(h)(1⊗ k) ∈ G ⊗ G (h⊗ 1)∆(k) ∈ G ⊗ G ∀h, k ∈ G
– The coassociativity property is satisfied:

(h⊗ 1⊗ 1)(∆⊗ idG)(∆(k)(1⊗ r)) = (idG ⊗∆)((h⊗ 1)∆(k))(1⊗ 1⊗ r)
∀h, k, r ∈ G

• The following maps are bijective:

Ti : G ⊗ G → G ⊗ G T1(h⊗ k) = ∆(h)(1⊗ k) T2(h⊗ k) = (h⊗ 1)∆(k)

Proposition 4.1. If (G,∆) is a multiplier Hopf algebra there is a unique homo-
morphism ε : G → C, called counit, such that

(ε⊗ idG)(∆(h)(1⊗ k)) = hk (idG ⊗ε)((h⊗ 1)∆(k)) = hk
∀h, k ∈ G.

There is also a unique anti-homomorphism S : G → M(G), called antipode, such
that

m(S ⊗ idG)(∆(h)(1⊗ k)) = ε(h)k m(idG ⊗S)((h⊗ 1)∆(k)) = ε(k)h
∀h, k ∈ G

here m is the multiplication map.
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(G,∆) is a regular multiplier Hopf algebra if S(G) ⊆ G and S is invertible. There is
a natural embedding ιG : G →M(G) which is an homomorphism

h 7→ (Lh, Rh) Lh(k) = hk Rh(k) = kh

Moreover ρh ∈ G and hρ ∈ G for all h ∈ G and ρ ∈M(G),

ρh = (Lρ1(h), Rρ1(h)) hρ = (Lρ2(h), Rρ2(h))

We write ρh = ρ1(h) and hρ = ρ2(h).
A right invariant functional on G is a non-zero linear map ψ : G → C such that

(ψ ⊗ idG)∆(h) = ψ(h)1

Here (ψ ⊗ idG)∆(h) denotes the element ρ ∈M(G) such that

ρk = (ψ ⊗ idG)(∆(h)(1⊗ k)) kρ = (ψ ⊗ idG)((1⊗ k)∆(h))

Similarly, a left invariant functional on G is a non-zero linear map ϕ : G → C such
that

(idG ⊗ϕ)∆(h) = ϕ(h)1.

Invariant functionals do not always exist. If ϕ is a left invariant functional on G
then it is unique up to scalar multiplication and ψ = ϕ ◦ S is a right invariant
functional.

algebraic quantum group

=

regular multiplier Hopf algebra with invariants

The dual of (G,∆) is (Ĝ, ∆̂):

• The elements of Ĝ are the linear functionals of the form ϕ(h·)

Ĝ = {ξh : G → C : ξh(x) = ϕ(hx)}

The elements of Ĝ can also be written as ϕ(·h), ψ(h·), ψ(·h).

• The product on Ĝ is defined as follows

(ξh · ξk)(x) = (ϕ⊗ ϕ)(∆(x)(h⊗ k))

• The coproduct ∆̂ : Ĝ → M(Ĝ ⊗ Ĝ) is defined by defining the elements

∆̂(ξ1)(1⊗ ξ2) and (ξ1 ⊗ 1)∆̂(ξ2) in Ĝ ⊗ Ĝ as follows

((ξ1 ⊗ 1)∆̂(ξ2))(h⊗ k) = (ξ1 ⊗ ξ2)(∆(h)(1⊗ k))

(∆̂(ξ1)(1⊗ ξ2))(h⊗ k) = (ξ1 ⊗ ξ2)((h⊗ 1)(∆(k))

• (Ĝ, ∆̂) is isomorphic to (G,∆) as algebraic quantum group

4.2. Examples.

• G = CG with the usual Hopf algebra structure.

ϕ = ψ = χe : G→ C χe(h) =

{
1 e = h
0 e 6= h

G is compact type because 1 ∈ G.
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• G = CĜ = {
∑
g∈G

agχg : ag ∈ C ag 6= 0 for a finite amount of g}

χgχh =

{
χg g = h
0 g 6= h

∆ : G →M(G ⊗ G) ∆(χg) =
∑
t∈G

χgt−1 ⊗ χt

The integral is ϕ = ψ : G → C ϕ(χh) = ψ(χh) = 1

G is discrete type because exists k ∈ G xk = ε(x)k .

• G = H a finite dimensional Hopf algebra. G is compact and discrete

Let (G,∆) be an algebraic quantum group and A be a G-module algebra.

Â(G) := G ⊗
ev
Ĝ (g ⊗ f)(g̃ ⊗ f̃) = gf(g̃)⊗ f̃

t · (g ⊗ f) =
∑
t(1) · g ⊗ t(2) · f

(t · f)(g) = f(S(t)g)

Â(G)⊗A (g ⊗ f ⊗ a)(g̃ ⊗ f̃ ⊗ ã) = gf(g̃)⊗ f̃ ⊗ aã

t · (g ⊗ f ⊗ a) =
∑
t(1) · g ⊗ t(3) · f ⊗ t(2) · a

A functor F : G-Alg→ D is G-stable if F (ι1) and F (ι2) are isomorphism where

ι2 : A→
(
Â(G)⊗A 0

0 A

)
← Â(G)⊗A : ι1

are corner inclusions.

5. Algebraic quantum kk-theory

Theorem 5.1. Let X be a set such that card(X ) = N × dimC(G). Let F : G-
Alg→ D be a MX -stable functor. The functor

F̂ : G-Alg→ D A 7→ F (Â(G)⊗A)

is G-stable.

Theorem 5.2. Theorem The functor jG : G-Alg → KKG is an excisive, homotopy
invariant, and G-stable functor. Moreover, it is the universal functor for these
properties.

6. Adjointness theorems in algebraic quantum kk-theory

6.1. Green-Julg theorem.

A#H = A⊗H (a#h)(b#k) =
∑

a(h(1) · b)#h(2)k

Theorem 6.1. Let H be a semisimple Hopf algebra and A be an H-module algebra
then

kkH(C, A) ' KH(A#H)
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6.1. Green-Julg theorem. Let G be an algebraic quantum group.

• Ĝ is a G-module: (g ⇀ f)(k) = f(kg)

• G is a Ĝ-module: f ⇀ g =
∑
f(g(2))g(1)

Theorem 6.2. (B. Drabant, A. Van Daele, Y. Zhang) Let A be a G-module algebra
then

(A#G)#Ĝ ' Â(G)⊗A

Theorem 6.3. The functors #G : KKG → KKĜ #Ĝ : KKĜ → KKG are equiva-
lences and

kkG(A,B) ' kkĜ(A#G, B#G)

where A,B are G-module algebras.

7. Conclusion

G group G algebraic quantum group

equivariant KK KKG KKG

stability B 'KKG MGB B 'KKG Â(G)⊗B

KKG

o
))
KK

τ

jj KKG

#

))
KK

τ

jj

Green-Julg adjoints functors adjoint functors if G = H
Theorem G is finite, 1

|G| ∈ ` semisimple Hopf algebra

kkG∗ (`, A) ' KH∗(AoG) kkH∗ (`, A) ' KH∗(A#H)

Ind-Res KKG

ResHG ++
KKH

IndGH

kk ?

adjoint functors

Imprimitivity IndGH(B) oG 'KK B oH ?

Baaj-Skandalis KKG

o
**
K̂K

G

ô

jj KKG

#
**
KKĜ

#

jj

duality equivalences equivalences
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