EQUIVARIANT ALGEBRAIC KK-THEORY
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1. KASPAROV’S KK-THEORY

Kasparov’s KK-theory is the major tool in noncommutative topology, [10]. The
KK-theory of separable C*-algebras is a common generalization both of topological
K-homology and tolopological K-theory as an additive bivariant functor Let A and
B separable C*-algebras then a group KK (A, B) is defined such that

KK,.(C,B) ~ KP(B) KK*(A,C)~Kj .. (A).
An important property of KK-theory is the so-called Kasparov product,
KK(A,B)x KK(B,C)— KK(A,C)

which is bilinear with respect to the additive group structures. The Kasparov
groups KK (A, B) for A, B € C*-Alg form a morphisms sets A — B of a category
K K. The composition in KK is given by the Kasparov product and the category
KK admits a triangulated category structure.

There is a canonical functor k : C*-Alg — KK that acts identically on ob-
jects and every *-homomorphism f : A — B is represented by an element [f] €
KK(A,B). The functor k : C*-Alg — KK

e ... is homotopy invariant: fo ~ f1 implies k(fo) = k(f1).

e ... is C*-stable: any corner embedding A — A ® K(¢?N) induces an iso-
morphism k(A) = k(A ® K(£°N)).

e ... is split-exact: for every split-extension [ ENYIER A/I (i.e. there exists
a *-homomorpthism s : A/T — A such that g o s = id) then k(1) M,
k(A) Ko, k(A/I) is part of a distinguished triangle.

The functor k : C*-Alg — KK is the universal homotopy invariant, C*-stable and
split exact functor. Main authors who worked in the previous results: J. Cuntz, N.
Higson, G. Kasparov, R. Meyer.

2. ALGEBRAIC KK-THEORY

Algebraic kk-theory was introduced by G. Cortifias and A. Thom in order to
show how methods from K-theory of operator algebras can be applied in completely
algebraic setting. Let ¢ a commutative ring with unit and Alg the category of ¢-
algebras (with or without unit).
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Kasparov’s KK-theory < Algebraic kk-theory
(10] 2]
bivariant K-theory on C*-Alg bivariant K-theory on Alg
k:C*"-Alg - KK j:Alg — 8RR
k is stable w.r.t. compact operators 7 is stable w.r.t. matrices
Ak Ao K(E(N)) A= Mao(A) = | Ma(4)
neN
k is continuous homotopy invariant j is polynomial homotopy invariant
f f
— A S
AT =B AT B
evo { levy evo | i) evy
H v/ H \
c([0,1], B) Blt]
Bl’[([( O([O, 1]B) Bﬁﬁﬁ B[t]
k is split exact j is excisive
k is universal for these properties j is universal for these properties
KK.(C,A) ~ KIP(A) [k (€, A) ~ KH..(4)]

KH is Weibel’s homotopy K-theory defined in [19].

Theorem 2.1. [2] The functor j : Alg — RR is an excisive, homotopy invariant,
and My -stable functor and it is the universal functor for these properties.

Let X be a infinity set. Consider
My :={a: X x X — £:sopp(a) < oco}.
Let A be an algebra, then My A := My ®; A.

Theorem 2.2. [13] The functor j : Alg — Ry is an excisive, homotopy invariant,
and Mx-stable functor and it is the universal functor for these properties.

If X = N both theorems are the same.

3. EQUIVARIANT ALGEBRAIC KK-THEORY

We introduce in [5] an algebraic bivariant K-theory for the category of G-algebras

where G is a group.
Equivariant Kasparov’s KK-theory <+ Equivariant algebraic kk-theory

[10] [5]
bivariant K-theory on G-C*-Alg bivariant K-theory on G-Alg
k:G-C*-Alg — KK€© j: G-Alg — RR¢
k is stable w.r.t. compact operators j is G-stable
A ~pra A@’C(KQ(G x N)) A~gge MooMg(A)
k is continuous homotopy invariant j is polynomial homotopy invariant
B ~gxe C([0,1], B) B ~qqc Blt]
k is split exact 7 is excisive
k is universal for these properties j is universal for these properties
G compact G finite and ﬁ el

KKS(C, A) ~ KIP(A % Q) (kKS(£,A) ~ KH.(A % G)|




EQUIVARIANT ALGEBRAIC KK-THEORY 3

Let A be a G-algebra and
Mg :={a:G x G — {:sopp(a) < oo}.
Consider in Mg ® A the following action of G
g (et ®a)=egs gt ®g-a
A G-stable functor identifies any G-algebra A with Mg ® A.
Theorem 3.1 ([5]). The functor j : G-Alg — RRY s an excisive, homotopy
imwvariant, and G-stable functor and it is the universal functor for these properties.

3.1. Green-Julg Theorem. The functors

X

G-Alg T Alg
AxG=AR!IG (ax g)(bx h) =alg-b] x gh
can be extended to

X
G-Alg @ Alg <— not adjoint functors

T

S — (R

adjoint functors if G is finite and ﬁ ¥4

Theorem 3.2. [5] Let G be a finite group of n elements such that % €. Let A be
a G-algebra and B an algebra. There is an isomorphism

Yoy kkY (BT, A) — kk(B, A x Q)
Corollary 3.3. [5] Let G be a finite group of n elementrs such that % € /l. Then
kkC(0,A) ~KH(Ax G)  Ekk9((,0) ~ KH((G)
3.2. Adjointness between Indg and Resg. Let H be a subgroup of G and A
an H-algebra. Define
e A% ={a:G — A:«is a function with finite support}
e nd$(A)={ae A9 :a(s)=h-a(sh) VheH,seG}
* (g-a)(s)=alg™'s)
The functors
Res
G-Alg~  H-Alg<—— IndS is NOT left adjoint to Res
Ind§
can be extended to

Rcsg
RRY T /A < Indf is a left adjoint to Res(:
Ind§

Theorem 3.4. [5] Let G be a group, H a subgroup of G, B an H-algebra and A a
G-algebra. Then there is an isomorphism

brg : kkC(IndS (B), A) — kk™ (B, ResZ (A))



4 EUGENIA ELLIS

Corollary 3.5. o kkG(L(G/H) | A) ~ kkM (£, Res (A)).
e If H is finite then kkC(£(G/H) A) ~ KH(A x H).
o kkC (1D A) ~ KH(A).

3.3. Baaj-Skandalis duality. A G-graduation on an algebra A is a decomposition
on submodules
A=A, AACAy VsteG
seG

The functors
X
R A
M

can be extended to

G-Alg G gr-Alg <—— not an equivalence

~——
>A<1 ~
3¢ e
X

T T —n
RRC_ T

X

~ G .
KR <—— an equivalence

4. ALGEBRAIC QUANTUM KK-THEORY
4.1. Van Daele’s algebraic quantum groups. Let £ = C and (G, A, ¢) an al-
gebraic quantum group. That means, (G, A) is a multiplier Hopf algebra:
e (G associative algebra over C with non-degenerate product
e M (G) multiplier algebra of G: (p1,p2) € M(G) if
— p;: G — G is a linear map (i = 1,2)
= pi(hk) = pi(h)k  p2(hk) = hpa2(k) p2(h)k = hpi(k) Vh,k€G
= (p1,p2)(p1, p2) = (p1P1, P2p2)
e An homomorphism A : G — M (G ® G) is a comultiplication if
- AR)(1®Ek)egrg (h®@1)Ak)eG®G VhkeG
— The coassociativity property is satisfied:
(h®1®1)(A®idg)(Ak)(1®r)) = (dg @A) (h@ DAKk))(1®1®r)
Vh,k,7r € G
e The following maps are bijective:
T,:60G-5G®G Ti(he@k)=AMR(Ack) Tyiheok)=(hel)Ak)

Proposition 4.1. If (G, A) is a multiplier Hopf algebra there is a unique homo-
morphism € : G — C, called counit, such that

(e®idg)(A(R)(1® k)) = hk (idg ®€)((h ® 1)A(k)) = hk
Vh,kEe€g.

There is also a unique anti-homomorphism S : G — M(G), called antipode, such
that
m(S 2 ide) (A1 @ k) = ek m(ide ©S)((h© 1)A(K)) = e(k)h
Vh,k € G

here m is the multiplication map.
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(G, A) is a reqular multiplier Hopf algebra if S(G) C G and S is invertible. There is
a natural embedding tg : G — M (G) which is an homomorphism

h— (Lp, Rp) Ly(k) = hk Ry (k) = kh
Moreover ph € G and hp € G for all h € G and p € M(G),
ph= Loy Boym) o = (Lpynys Bpan))
We write ph = py(h) and hp = pa(h).
A right invariant functional on G is a non-zero linear map 1 : G — C such that
(Y @1idg)A(h) = 1p(h)1
Here (¥ ® idg)A(h) denotes the element p € M(G) such that
pk = (¥ ®idg)(A(h)(1® k)  kp= () @idg)((1®k)A(h))

Similarly, a left invariant functional on G is a non-zero linear map ¢ : G — C such
that

(idg @p)A(h) = @(h)1.
Invariant functionals do not always exist. If ¢ is a left invariant functional on G

then it is unique up to scalar multiplication and ¢ = ¢ o .S is a right invariant
functional.

‘ ALGEBRAIC QUANTUM GROUP ‘

‘R,EGULAR, MULTIPLIER HOPF ALGEBRA WITH INVAR,IANTS‘
The dual of (G,A) is (G, A):
e The elements of G are the linear functionals of the form ¢(h-)
G={&:G—C: &) = p(hv)}

The elements of G can also be written as @(-h), 1(h-), ¥(-h).
e The product on G is defined as follows

(n - &r)(2) = (¢ @ ) (A(z)(h @ k)

e The coproduct A:G = M (_C’; ® Q) is defined by defining the elements
A()(1® &) and (& ® 1)A(&2) in G ® G as follows

(&L @ DAE))(he k) = (& ®&)(AMR)(1® k)

(A1 &) (h@k) = (& ®&)((h®1)(A(k))
° (Q, A) is isomorphic to (G, A) as algebraic quantum group

4.2. Examples.
e G = CG with the usual Hopf algebra structure.

1 =h
p=9=X.:G—C Xe(h)_{ 0 275/1

G is compact type ‘ because 1 € G.
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e G=CG = {Z agXg : ag € C ay # 0 for a finite amount of g}
geG

=h
wa={ 3 020
A:G—MGRG) Alxg) =D Xgrr @ X
teG
The integral is p =1 : G — C olxn) =v(xn) =1
’ G is discrete type ‘ because exists k € G zk = e(x)k .

e G = H a finite dimensional Hopf algebra. ‘Q is compact and discrete

Let (G, A) be an algebraic quantum group and A be a G-module algebra.
A(9)=G96 (92 NG® ) =of@)® ]

t-(g@f)=>ta) 9®@ta - f

(- f)lg) = F(S(t)g)

AG)® A (9o f®a)(§e foa)=gf(75®feaa

t-(gef®a)=3ta) g@ta)  fRt@g) a
A functor F : G-Alg — D is G-stable if F'(¢1) and F(t2) are isomorphism where

AG®A 0

L22A—>< 0 A

)<—A(g)®A:L1

are corner inclusions.

5. ALGEBRAIC QUANTUM KK-THEORY

Theorem 5.1. Let X be a set such that card(X) = N x dimg(G). Let F : G-
Alg — D be a My-stable functor. The functor

F:G-Alg—»D A F(AG) ® A)

is G-stable.

Theorem 5.2. Theorem The functor j9 : G-Alg — RRY is an excisive, homotopy
invariant, and G-stable functor. Moreover, it is the universal functor for these
properties.

6. ADJOINTNESS THEOREMS IN ALGEBRAIC QUANTUM KK-THEORY
6.1. Green-Julg theorem.
A#H=A@H  (a#th)(b#k) =Y alhq) - b)#ho)k

Theorem 6.1. Let H be a semisimple Hopf algebra and A be an H-module algebra
then

kk™(C, A) ~ KH(A#H)
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6.1. Green-Julg theorem. Let G be an algebraic quantum group.

e Gisa Q—module: (g — (k) = f(kg)
e GisaG-module: f—g=73 f(g02))9(1)

Theorem 6.2. (B. Drabant, A. Van Daele, Y. Zhang) Let A be a G-module algebra
then

(A#G)#G ~ A(G) ® A

Theorem 6.3. The functors #G : /Y - ﬁﬁg #_C’; : ﬁﬁg — 889 are equiva-
lences and

kk9 (A, B) ~ kk9 (A#G, B#G)

where A, B are G-module algebras.

7. CONCLUSION

G group G algebraic quantum group
. . G g
equivariant KRR RR AR
stability B ~gac MgB B~qeo AG)® B
X #
&8¢ 7 s w29 7 an
$—-;-/ V‘-:'/
Green-Julg adjoints functors adjoint functors if G = H
Theorem G is finite, ﬁ el semisimple Hopf algebra
kS (6, A) ~ KHL(Ax G) | K1 (0A) ~ K HL(A4H)
ResH
- o ™ 5
Ind-Res AR _— e
IndH

adjoint functors

Imprimitivity d%(B) x G ~za Bx H
X #
Baaj-Skandalis arC " &xC &89 asS
s e
duality equivalences equivalences
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